International Journal of

l'IEAT and MASS
TRANSFER

PERGAMON

International Journal of Heat and Mass Transfer 44 (2001) 3553-3563
www.elsevier.com/locate/ijhmt

Approximate solutions for metallic regenerative heat
exchangers
H. Klein **, G. Eigenberger °

& Linde AG, Werksgruppe Verfahrenstechnik und Anlagenbau, Dr. Carl-von-Linde-Strafie 6-14, 82049 Hollriegelskreuth, Germany
° Institut fiir Chemische Verfahrenstechnik, Universitat Stuttgart, Boblinger Strafie 72, 70199 Stuttgart, Germany

Received 18 May 1998; received in revised form 2 October 2000

Abstract

An analytical model to calculate the temperature profiles and the effectiveness of regenerative heat exchangers in
counterflow is presented. It is limited to cases where the storage matrix has a small wall thickness so that no temperature
variation in the matrix perpendicular to the flow direction has to be considered. This is usually the case for metallic
matrices but can also be fulfilled for ceramic matrices in the form of a thin-walled monolith. Starting from a two-phase
model for the gas and storage matrix an approximate solution is derived for the limiting case where the period of the hot
and cold process stream becomes infinitesimally small. Using series expansions of this solution the equations to cal-
culate the temperature profiles and the regenerator effectiveness are obtained. Contrary to already published correla-
tions the presented analytical approach considers the heat conductivity in the storage matrix parallel to the flow
direction. The range where these equations can be applied is shown by comparing the approximate solution with a
numerical solution of the complete set of governing dynamic energy balance equations. The effect of important process
parameters on the performance of a countercurrent regenerative heat exchanger is discussed. © 2001 Elsevier Science

Ltd. All rights reserved.

1. Introduction

Regenerative heat exchangers are often used in pro-
cess technology where a compact design is required. The
use of a metallic storage matrix is limited to maximum
temperatures of 800-1200°C, depending on the metal
used, while regenerators with a ceramic storage matrix
as, e.g., used for air preheating in the metallurgical in-
dustry can withstand very high temperatures [1].
Metallic regenerators feature high specific heat transfer
areas which can be over 10000 m? per m? storage vol-
ume in case of metal wire meshes. A commonly used
example for metallic regenerators are rotary heat ex-
changers following the Ljungstrom principle for heat
recovery applications from hot flue gases [2-5]. Rotary
heat exchangers are also often used in air conditioning
technology for air preheating and precooling [6,7]. Ad-
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ditionally to pure heat exchange, the exchange of water
vapor between the two air streams can be accomplished
simultaneously [8,9]. Compact metallic regenerators for
cold recovery as well as for water and carbon dioxide
removal had been commonly used in refrigeration
technology, but due to the development of compact
plate heat exchangers and sorptive drying processes they
lost their original significance [2,10]. Regenerative gas
cycle processes following the Stirling principle offer an-
other application for metallic regenerators. In these
processes a high thermal efficiency of the working gas
cycle can only be achieved with regenerators whose ef-
fectiveness is close to 100% [11,12]. Highly efficient re-
generative heat exchangers used in regenerative
refrigeration cycles and heat pump processes are not
only the premises for high effectiveness numbers but
decisive that the principle works at all [13]. In gas tur-
bine applications rotary regenerative heat exchangers
are widely used. In order to achieve a high efficiency of
the gas cycle process a careful analysis of the thermal
performance of the regenerator is required [14].
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Nomenclature
Ar cross-sectional area of regenerator (m?)
ay specific heat transfer area (m?/m?)

Cp specific heat capacity gas (J/kg K)
Cs specifcic heat capacity solid (J/kg K)
G. mass flux gas (kg/m? s)

Lg regenerator length (m)
7 mass flow rate gas (kg/s)
NTU number of transfer units
Pe Péclet number

Or heat stored in regenerator (J)

Qe heat stored in regenerator under ideal
conditions (J)

Q;V heat flux via conduction (W)

0, heat flux between gas and solid (W)

t time (s)
At length of one half-period (switching time) (s)
z flow length coordinate (m)

Greek symbols
o heat transfer coefficient (W/m? K)

€ porosity of regenerator

r ratio of solid mass to gas mass in regenerator

{ dimensionless flow length

R regenerator effectiveness

Az heat conductivity parallel to flow direction
(W/m K)

D heat conductivity perpendicular to flow

direction (W/m K)
0 density of gas (kg/m?)
0s density of solid (kg/m?)
o ratio of heat capacities
T dimensionless time

Subscripts and superscripts
g gas
s solid
half-period 1 (inlet of hot gas)
2 half-period 2 (inlet of cold gas)
in inlet
out  outlet
averaged over one half-period

In the past numerous calculation methods were de-
veloped to determine the temperature profile of the gas
and the storage matrix in regenerative heat exchangers
as well as their effectiveness. NuBelt [15] developed four
analytical methods and one graphical method for the
calculation of the temperature profiles where each
method is based on assumptions concerning the heat
conduction parallel (4,) and perpendicular (4,) to the
flow direction of the gas. In a second paper NuBelt [16]
developed an analytical solution for the periodic-steady
state for negligible heat conduction parallel and infinite
heat conduction perpendicular to flow direction (case 3
of [15]). In all cases presented by NuBelt the energy of
the gas entrained in the storage matrix (compared to the
energy of the solid material) is neglected at the period
switches. Unless otherwise stated this has been assumed
for all models cited in this paper.

Different solutions were presented for the model
based on the assumption of negligible heat conduction
parallel and infinite heat conduction perpendicular to
flow direction (4, = 0, 4. = o). Among them most are
based on numerical finite difference schemes where the
periodic-steady state solution is obtained from initial
guesses of the temperature profiles and successive
substitution [4,5,17-20]. Kays and London [21] corre-
lated the results obtained from numerical solutions to a
simple algebraic equation for the regenerator effective-
ness. The time-consuming iteration scheme can be
avoided using the closed solution methods being pub-
lished in [22-25].

All models and solutions cited above do not take
into account longitudinal heat conduction. This effect
was first considered in the numerical model developed
by Bahnke and Howard [26]. These results were cor-
related by Shah [27] to an algebraic equation for the
regenerator effectiveness. New models taking into ac-
count heat conductivity parallel and perpendicular to
the flow direction (two-dimensional heat conduction in
the matrix) are still subject to numerical solution
schemes using explicit finite-difference methods and
successive substitution for obtaining periodic-steady
state [28,29]. A model developed by Ren and Wang [30]
considers the effect of longitudinal heat conduction as
well as temperature-depended thermal properties. Fur-
thermore, in the numerical investigation the energy of
the gas entrained in the storage matrix is taken into
account. This effect is small if the residence time of the
gas within the matrix is small compared to the length
of one period [31]. For regenerators in Stirling engines
this assumption is usually not fulfilled. Models with
closed analytical solutions have been developed where
the dynamic behavior of the gas phase entrained in the
matrix is considered [32,33]. These models take into
account that part of the gas remains within the chan-
nels of the matrix from one period to the other intro-
ducing the so-called flushing phase. However, other
assumptions such as infinite thermal capacity and zero
heat conductivity parallel to the fluid flow of the
storage matrix are required to obtain a closed solution
of the problem.
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The following table shows a summary of the models
and their solution scheme for thermal regenerators
cited above. It can be seen that no closed analytical
solution has been presented so far taking into account
the axial heat conductivity of the storage matrix. The
solution developed from thermophysical basic equa-
tions presented in this paper is an approach to close

this gap.

Model Finite difference  Closed
assumption solutions solutions
Short switching NuBelt case
times 1[15]
=0, 2, =00 Lambertson NuBelt case
[17] 3 [15]
Willmott Hill and
[18] Willmott [22]
Zafeiriou and Scaricabarozzi
Wurz [4] [23,24]
Hill and Atthey [25]
Willmott [19,20]
>0, 2,>0 Shen and
Worek [28,29]
4:>0, J,=0c0  Bahnke and Klein and
Howard [26] Eigenberger
Shah [27] (this paper)
-=0, 4, >0 NuBelt case 5 Hausen [34]
[15]

incl. gas energy
storage

Willmott [35]

Ren and Wang
[30]

Willmott and
Hinchcliffe [31]

de Monte
[33]

2. Dynamic energy balances

Regenerators are structures in which the tempera-
tures change continuously both in space and in time.
The temperature change perpendicular to the main flow
direction can be usually neglected if metallic regenera-
tors or regenerators with a comparatively small wall
thickness of the storage material are used. Therefore, a
one-dimensional dynamic two-phase model according to
Fig. 1 with energy balance equations for the flowing gas
phase and for the solid matrix can sufficiently describe
the relevant effects in the regenerator [36]. Axial heat
conduction will be considered only in the matrix due to
higher heat conductivity compared to the gas. The en-
ergy balance for the volume element shown in Fig. 1
yields the following model of the regenerator:

" 0
_ I T — \b
T . e z

I T I

dz

[~ w - Z+dz
m Qr(z+d2)
Lr
Gas Solid
(b) (c)

Fig. 1. Regenerator structures and control volume for the one-
dimensional heterogeneous two-phase model: (a) monolithic
structure, (b) wire mesh; (c) model.

o7, 0T,
socy 3 = FGucy <+ oa(Ty — Ty), (1)
0T, T,
(1 —s)gscsazﬂqg—aav(ﬂ—Tg). (2)

In order to formulate boundary conditions the solid
matrix is considered to be adiabatically insulated at both
boundaries. The inlet temperatures are assumed to be
constant for both half-periods. According to Fig. 2 the
convection term is positive during the first half-period
(0 <t < Ar) with gas flow from right to left. In the
second half-period (Ar < t < 2Af) the gas flows from left
to right and the negative sign is valid. The mass flow rate
is assumed to be constant and to have the same value for
both half-periods which holds also for the heat capaci-
ties (“‘balanced regenerator”, G.icp1 = Gcpr). The mass
flux G. is referred to the regenerator cross-sectional area
AR.

Since the outlet temperature changes during each
cycle it has to be averaged over one half-period to define

O0<t<At
T—Zout Tzout
- -
At<t< 2At
Tlin% Tl%
—— Z
0 Lr

Fig. 2. Regenerator with periodic switch of flow direction.
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the regenerator effectiveness (index 1 represents the inlet

of hot gas at z = 0, index 2 the inlet of cold gas at z = L):

_ QR _ Tlin - Tloul _ TZout - TZin
Qigeal Tlin - T2in Tlin - T2in

MR 3)
The energy of the gas entrained in the storage matrix will
be neglected compared to the energy of the solid matrix.
This assumption is in accordance with most of the
models published for regenerative heat exchangers
[4,5,15-20]. It can be justified by comparing the time
constants of the two differential equations in Egs. (1)
and (2). The volumetric heat capacity of the matrix g cs
is two to three orders of magnitude bigger than the one
for the gas phase gc,,. Therefore, the energy balance of
the gas phase can be considered as quasi-stationary
[37,38]:

oT,
:FGcha—; =aay(T; — Ty). (4)

In this case the dynamic changes in the gas phase are
neglected after switching the flow direction. The gas
temperature profile jumps with each change of the flow
direction, an assumption which breaks down if the cycle
time approaches the residence time but holds for con-
ventional regenerator applications such as rotary heat
exchangers.
After introduction of the dimensionless variables
z

T = ﬁ and (= In (5)
the following energy balances and boundary conditions
result for the first half-period (0 <7 < 0.5):

T,

o =2NTU(T; — Tn), (6)
oT, 1 0T
— =——2-2NTU(L - T,
7ot T Pe ol U~ Tia). @
ng};:, = Doin, (8)
oT.
= =0, 9
3 9)
oT.
— =0. 10
cam (10)
The result for the second half-period (0.5<t < 1) is
0T,
—a—?:zNTU(TS—Tgl), (11)
oT, 1 0T,
— = —2NTU(T; — Ty), 12
T (7.~ T) (12)
Tgl};zo = Tlim (13)
oT.
=0, 14
T, (14)
0T,
— =0. 15
=l (15)

The so-called number of transfer units, NTU, serves as a
measure for the quality of the heat transfer between the
gas and the matrix and is defined as follows:

OC(Z\/LR
2G.cp '

NTU = (16)
The relation of energy transport through convective flow
to heat conduction is described by the Péclet number:

_ GchLR

P
C=TA

(17)
Additionally, the following parameters are important
for the dynamic behavior of the regenerator: !
cs
== 18
=2 (18)
(1 — S)Q sLR

Ir= MG (19)

The product ¢I" can be interpreted as the ratio of heat
storage capacity of the solid matrix to that of the flowing
gas during one complete period.

3. Limiting case of fast switching

Often the solution of the countercurrent recuperative
heat exchanger is used to describe in a simplified way the
behavior of a regenerator with short switching times
[15,37]. However, fast switching of the streams is only an
incomplete condition for the useability of the counter-
current recuperator solution. More characteristic is the
product ¢I'. This section will give a derivation of the fast
switching solution starting from the dynamic differential
equations of the regenerator.

The solid energy balances, Eqgs. (7) and (12), are in-
tegrated over one complete cycle

laTS
JF/ — dt=0l'Ti(t=1) — T,(r = 0)]
0 ot
152
L% 4 Nt
Pe 0 ag

05
X / (Iy — Tp) dt — 2NTU
0

1
< [ (- (20)
0.5
In the cyclic-stationary state the solid temperature at the
end of the cycle 7;(t = 1) is equal to that at the begin-
ning 7;(t = 0) such that

! Hausen [2,13,34] used in his investigations the reduced
period length IT = NTU/(2¢I') and the reduced regenerator
length A = 2NTU.
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1 2 ! 0.5
—— % [ 1dc—2NT .- T,
ol ), dr U/o (T, w) dt
1
“ONTU [ (T, - ) dr. (21)

0.5

The following Taylor-series expansion will be used to
evaluate the integrals

B =T =0)+ o

| T + O(?). (22)

=0

From the dimensionless energy balance for the solid
matrix

oT, 1 @7, 2NTU
Ot Peal’ 37 ol

(T, - T) (23)

it follows for the limiting case oI’ — oo

lim 08— (24)

al'—o0 a’[

and therefore
I(x) = Ti(x = 0) # /(2). (25)

Since the gas phase is considered in quasi-steady state it
follows:

Ta(r) = Ta(r = 0) # f (1), (26)
To(7) = Tn(r = 0) # £ (1), (27)
i.e., the temperature of the solid and the gas phase are
independent of the time 7. Therefore Eq. (21) can be
written as

1 8°T,

Pe 6“2

— NTU(T; — Tpp) — NTU(T; — Ty). (28)
This equation is identical with the stationary energy
balance of the solid in a countercurrent recuperative
heat exchanger with equal flow rates where axial heat
conduction is considered. This equation can also be
obtained with the assumption of infinitesimally fast
switching of the flow direction [37]. The above deriva-
tion however shows that the correct criterion for limiting
behavior is a very high value of the product

Cs (1 — S)QsLR

I —
T 2AG.

(29)
This is achieved via [39]

short switching time At¢,

low mass flux G,

high regenerator length Ly,

solids with high density g,

solids with high specific heat capacity ¢; and

gases with low specific heat capacity c,,.

The following system of ordinary differential equations is
obtained as an approximation for a regenerative heat

exchanger with axial heat conduction and high values of
ol’

1 d°T;
T
ddgl = ONTU(T; — Ty), (31)
d7,
- TZZ = ONTU(T; — Tp). (32)
The boundary conditions are
Tal,_o = Tiin, (33)
Tol._, = Doy (34)
dr.
| =0, 35
dé’ o ( )
T,
df, =0. (36)

An analytical solution of this boundary value problem
was obtained using the computer algebra system MA-
PLE [40]. The resulting spatial profiles along the re-
generator length of the gas and solid temperatures
depend on the parameters NTU and Pe as well as on the
inlet temperatures. The limiting solution is valid for re-
generators with o' — oo and will be called the zero-
order solution. With the abbreviations k; = v2NTU
V2NTU +Pe and k, = vV2NTU/V2NTU + Pe the
solution has the following form:

(T“n + T2in)< di= 1/(2 + 1+ 2NTU> + TlinPe

A4

2+ Pe + & + 2]

NTU ekl o1
h(lf:),ch:
(TZin - Tlin)( 2NTU ef 41 )

2+Pe+1\1‘;€U+2k2A1+1 ’

() =

S

(37)

. ) ekl —1 lin
1 1
(Ty + Tz,n)<k ey + 1) + Pe(Tiin + o)

2+Pe+N‘;€U+2kz

‘I+1
K

(sz — Tlin) (Pe{ A J:rle‘(l —k k1 (1-0) _g 1C>
+

kl+1

I

2+Pe+N’;fU+2k2 m

(38)

(Tin + o) (S50 + 1) + Pe(Tin + )
2+P€+N[.}£)U+2k2

Tgoz(O =

‘1+1

(T2in - Tlin) <P€C + hhpehl k ¢ Qfeklg)

efl+1 ef1 41

+

ok

2+ Pe + o + 2kE

‘I+1

(39)

The zero-order solution for the temperature profiles is
shown in Fig. 3. The solid temperature profile 70 is
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™
900 4
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- .'\_ s
= IRGE
600
Te2
300 T T T
0.00 0.25 0.50 0.75 1.00
¢

Fig. 3. Zero-order solution of the regenerator or countercur-
rent heat exchanger solution for 7j; = 1200 K, Ty, = 300 K
and NTU = 11.95, Pe =12.59.

significantly flattened compared to the connecting line
between the two inlet temperatures (77, = 1200 K,
Thin = 300 K). This is due to the heat conductivity in the
storage material (Pe = 12.59). Starting from the re-
spective inlet temperature, the gas-phase temperature 7, gol
or Tgo2 approaches the solid temperature for both half-
periods. The remaining difference at the outlet is due to
the limited heat transfer rate between the solid and the
gas phase (NTU =11.95).

The quality of the heat exchanger is described
through the regenerator effectiveness n according to
Eq. (3). With the above equations the zero-order solu-
tion for the effectiveness is

Pe + 2ky((eh — 1)/(e" + 1))

2+ Pe + (Pe/NTU) + 2ky((eh — 1)/ (e + 1))
(40)

My =

This relation is independent of the inlet conditions. Eq.
(40) changes for Pe — oo to the special case of the
countercurrent heat exchanger without axial heat con-
duction [21]

NTU

1 +NTU’ (“41)

ny =

4. Approximation of the regenerator via a series expansion

The above solution is only valid in the limit of
oI’ — co. A more general approximative solution of the
balance equations can be obtained as follows. This ap-
proximation is hereafter referred to as first-order solu-
tion.

Tiin

1200 1

1000 -

600

400 A

200 T T T
0.00 0.25 0.50 0.75 1.00

4

Fig. 4. Temperature profiles in the regenerator.

Before going through the mathematical derivation a
more qualitative interpretation of the derived first-order
solution will be given. In the periodic-steady state the
solution profiles oscillate around the profiles of Fig. 3.
This oscillation is shown in Fig. 4 for the case of the
solid temperature. The solid temperature profile moves
from position 2 to position 3 during flow of cold gas
from the right to the left and from 3 back to 2 during the
flow of hot gas from the left to the right. The zero-order
solution, profile 1, will thus be a mean value profile
between profiles 2 and 3 with the following restriction:
since the solid temperature at the left-hand side ({ = 0)
can never exceed the feed gas temperature 7};, and at the
right-hand side ({ = 1) can never fall below 75, profile 2
is bounded by Tj;, and profile 3 by T»;,. The assumption
of the depicted vertical shift of profile 1 (within the limits
of Ty, and T5y,) has the advantage that the boundary
conditions of the intermediate profiles remain physically
correct.

4.1. Calculation of the temperature profiles

The energy balance for the solid as given by Eq. (7)
or (12) is

oT, o°T,
o = :ul:u26_€2 = 2NTUp,(T5 = Ty), (42)
where the following abbreviations are used
1 1
M =5 and p, = ol (43)

The zero-order solution for Eq. (42) was derived under
the assumption y, = 0. It contains the full dependence
on the heat transfer parameter NTU and the axial
conductivity g,. In order to derive a first-order solution
T! we use a Taylor series expansion of 7; for the ad-
ditional parameter p, around T = Ty(p; = 0,4, = 0)
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oT, 1 T,
=7’ : - — 24 44
R T A T (44)
=0 =0
With the abbreviation
oT, 1 O°T,
_ 9 20h 45
¥ S o T 202 ot T (45)
Hy=0 1y=0
it follows
T) =T+ py. (46)

Since TS0 is the time independent stationary solution, it
disappears after derivating with respect to the dimen-
sionless time t and Eq. (46) gives
o oy
o M

(47)
The solid energy balance, Eq. (42), can be written for
u; = 0 (neglecting axial conduction) as

o7
ot

= —ONTU (T, — Ty) =

—ONTUp [7(, = 0) — T2, =0)] . (48)

This means that the solid temperature profile moves
upwards or downwards as in Fig. 4, if the temperature
difference (7y — 7,) is positive or negative. Due to the
quasi-stationarity of the gas phase the difference be-
tween solid and gas temperature is constant even for
transient profiles. Therefore, the following ordinary
differential equation for s can be obtained from Eq. (47)

(31_1 = “NTU[7 (1 = 0) = 21, = 0)]. (49)

This equation can be integrated directly if the following
case distinction is made:

0<71<0.5:

Y = —2NTU[7(, = 0) = T4(1, = 0)|t+ G, (50)
0.5<t<1:

¥ = =2NTU[T(1, = 0) = T8 (1, = )]t + C1. (51)
The solution profiles for u; = 0 are required to calculate
the difference between solid and gas temperatures. They

are derived from Eq. (37) to (39) for the limiting case
Pe — oo

NTU | Tiin + T
0 o . lin 2in . _ .
TS(,Lll —0)— 1—|—NTU [ 2NTU +Tlm(1 C)+T2m§:|7
(52)
NTU
0 — —
Tg1(ﬂl =0) = Tin — 1_i_w(Tlin — Doin){s (53)

NTU (
1+ NTU

After inserting Eqs. (50)—(54) into Eq. (46), the following
relations for the transient change of the solid tempera-
ture are obtained:

Tgoz(:ul = 0) = T2in + Tlin - T2in)(c - 1) (54)

0<t<0.5:
NTU 1-0.25
T'=T1"— —————(Tiin — Do) ————, 55
1+NTU(' ) (53)
05<t<1:
NT 0.75 —
Tl = TO v (Tlin - T2in)7‘t- (56)

s — % T1T1NTU ol

As a condition to determine C; and C, from Egs. (50)
and (51) it shall be assumed that the temperature profile
in the middle of each half-period (t = 0.25 and = = 0.75)
is the same as that of the zero-order solution 72, Eq. (37).
This has been labeled profile 1 in Fig. 4. A period now
starts from profile 1 and a symmetric shifting around
this profile results.

The gas temperature follows the solid temperature
such that the result can be taken directly from Eqgs. (55)
and (56):

0<t<05:
NTU 7—0.25
1 _ 70  NPY
Tg —ng 1+NTU<Tlm T21n) ol ’ (57)
05<t<1:
NTU 0.75—1
T, = Ty — g (Tiin = Toin) =
¢ = Ta ~ oo Tie = ) —F (58)

Since any changes of the profile shape are neglected,
solid and gas temperatures can be calculated which lie
above the hot inlet and below the cold inlet temperature.
In these cases the temperature has to be set equal to the
respective inlet temperature. This will be shown in the
following section.

4.2. Calculation of the regenerator effectiveness

In order to calculate the regenerator effectiveness via
Eq. (3) the outlet temperatures can be calculated with
Eq. (57) or Eq. (58) and then be integrated over the
respective half-period. Considering half-period 2 (cold
inlet at { = 1) yields

NTU 7—0.25
—————(Ttin — Din) ————.
(1 2) ol’

(59)

Tglz(évzo) = Tgoz(C:O) -

As mentioned above, a temperature above the inlet
temperature 7j;, might follow from this relation due to
the neglection of the form changes. In this case it is as-
sumed that

Ty,(( = 0) = Tiin. (60)
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The time t* until Eq. (59) is valid follows from the re-
lation

NTU T —0.25
TH({=0) = ————(Ttin — Doin) ——— = Tlin-
26 =0 = rg e = Bn) — 7 !
(61)
Resolved for t* this yields
Tiin — Tp(C=0) 1 + NTU
* 2 _ g F
v =max [0,0.25 T To NTU o
(62)
Therefore, the outlet temperature is
<1 Tglz(C:O):Tnn7 (63)
=1
NTU t—0.25
1 _ _ r— _ LT
Th(E=0) = T4 =0) ~ g (T Ton) - (64)

The average outlet temperature for the cold half-period
results from the integration

_ 1 0.5
=0 =53 [ =0 (65)

The integral has to be split as follows:

*

0.5 T 0.5
/ TH(L=0) dT:/ Tiin dT+/ [TgOz(CZO)
0 0 T*
NTU T— 0.25:|
dr.

“TINTU (Tiin — Toin)

(66)
After evaluating the individual parts it follows:
TH((=0)=TH({=0)+1 {2Tlin — 2T (= 0)

NTU 1 —-0.25
1+NTU oI

(Thin — sz)}. (67)

1.00

0.95+ 5

0904 -~ 5

nr

0.85-/ 4

0.80 \ \ \
0 50 100 150 200

NST

With the definition in Eq. (3) the final result for the re-
generator effectiveness is

NTU 05—
1+NTU oI

*

1 _ .0
NReg = NReg — T

-2 (68)

Tlin - T;z(l = O)

Thin — Toin ’
where Tp,({ = 0) is obtained from Eq. (58) and 7" is
calculated from Eq. (62).

In cases where the outlet temperature Ty ({=0)
moves around the value of the stationary countercurrent
solution without reaching the hot inlet temperature, the
effectiveness from the first-order solution is equal to the
effectiveness from the zero-order solution. The regener-
ator effectiveness decreases when the parameter ol de-
creases, e.g., due to a higher switching time A¢, such that
7 in Eq. (62) is above zero.

The transient change of the temperature profiles for
solid and gas phase in the regenerator as well as the
effectiveness can now be approximately described. The
validity of this approximation can only be checked via
comparison with the solution of the complete dynamic
simulation model in Egs. (1) and (2). This comparison is
presented in Section 4.4. But first it has to be discussed
how fine the complete dynamic model has to be dis-
cretized for its accurate numerical solution.

4.3. The required grid for an accurate regenerator in the
limit of countercurrent heat exchange

In the complete dynamic two-phase model of the
regenerator the spatial domain was discretisized in Egs.
(1) and (2) using the finite volume method [41]. The
resulting ordinary differential equation system could
then be numerically solved with the integrator LIMEX
[42]. It turned out that the regenerator efficiencies
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Fig. 5. Regenerator effectiveness 1 as a function of the selected number of grid points NST calculated via dynamic simulation (—-)
and analytical zero-order solution (—) for NTU = 11.95, Pe — oo, oI’ = 12.31; left: equidistant distribution, right: refined grid at the

boundaries.
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Fig. 6. Temperature profiles in the regenerator using the dynamic simulation model (—-) and the approximated regenerator model (—)
for Tjin = 1200 K, T, = 300 K and NTU = 11.95, Pe = 12.59, oI’ = 2.73; left: gas phase, right: solid matrix; upper: half-period 2,

lower: half-period 1; <: flow direction.

obtained changed with the selected number of grid
points. In Section 3 it was shown that a periodic regen-
erator will be described by the model of a countercurrent
heat exchanger in the limit of large ¢I" and an analytical
solution was presented for this case. This solution can
now be used in comparison with the numerical solution
to determine the required computation grid.

Fig. 5 shows the regenerator effectiveness calculated
via simulation as a function of the number NST of grid
points used. The grid in the left diagram is equidistant
whereas in the right diagram the grid points increase
exponentially towards both boundaries (70 coarse grid
points, resp. 15 fine grid points at the boundaries).
The continuous line shows the analytical solution of the
countercurrent recuperator which coincides with the
exact solution of the regenerator due to the high value of
o' assumed. With an equidistant grid distribution
reasonable agreement is only achieved with a high
number of grid points while refining the grid at the
boundaries approximates the exact solution very well
already at a small number of grid points.

4.4. Validation of the proposed approximated regenerator
model

Fig. 6 shows a comparison of the temperature pro-
files obtained by simulation and with the approximated

model. As shown above, the first half-period in the
cyclic-stationary state is characterized by the inlet of cold
gas at the right boundary (75, = 300 K). The gas cools
the solid matrix and the gas profile follows that of the
solid phase. The flow direction changes during the sec-
ond half-period and hot gas (7};, = 1200 K) enters at the
left boundary. Now the solid matrix is heated up again.

Nr

0.0 T T T T

cl’

Fig. 7. Regenerator effectiveness 7 using the dynamic simu-
lation model (——) and the approximated regenerator model (—)
for NTU=11.95, Pe = 12.59.
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The comparison between simulation and the ap-
proximate model shows that some differences occur in
the profile shape. Important is that the reduced model
shows almost exactly the correct gas outlet temperatures
at each time such that the regenerator effectiveness can
be estimated very well. Fig. 7 shows that this is especially
valid for higher values of oI'. Regenerative heat ex-
changers are often used in process technology under
conditions where the temperature profiles move as little
as possible. This is exactly the range where the reduced
model describes the regenerator behavior with high ac-
curacy, but also the failure of the regenerator at low
values of oI is well represented.

4.5. Effect of parameters on regenerator effectiveness

The calculation method presented above allows the
determination of the regenerator effectiveness 5y de-
pending on the parameters o', NTU und Pe. With ideal
conditions for the heat transfer and no axial heat con-
duction (NTU, Pe — o) an almost ideal regenerator be-
havior can be already achieved at a value of oI’ =5, as
shown in Fig. 8 on the left-hand side. Values of ~100 for
the parameters NTU and Pe have to be reached for a
comparably high effectiveness at ideal heat storage char-
acteristics (6" — o0). Therefore, NTU and Pe are the key
parameters to develop highly efficient regenerators.

5. Conclusion

The presented model and its analytical solution allow
for an simplified calculation of the temperature profiles
in regenerative heat exchangers and for a good ap-
proximation of regenerator effectiveness. In the techni-
cally relevant region the approximative solution fits to
the numerical solution of the one-dimensional dynamic
two-phase model. Especially the calculation of the gas
outlet temperatures and therefore the effectiveness as a
function of the parameters NTU, Pe and oI’ are very

well approximated. A value of o' =5 is sufficient for
efficiencies higher than 98% if optimal conditions for
heat transfer and heat conduction are chosen. In case of
ideal heat storage characteristics a value of ~100 has to
be reached for the parameters NTU and Pe in order to
obtain efficiencies close to one.
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